DARMOWA WYSYŁKA od 149 zł do Żabki i wielu innych punktów DPD Pickup!
Darmowa dostawa od 149,00 zł
Applied Deep Learning on Graphs - Khandelwal Lakshya
Super cena

Applied Deep Learning on Graphs - Khandelwal Lakshya

  • Leverage graph data for business applications using specialized deep learning architectures
299,89 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: 299,89 zł / szt.0%
Cena regularna: 302,05 zł / szt.-1%
z
Możesz kupić także poprzez:
Produkt dostępny
Produkt dostępny
14 dni na łatwy zwrot
Bezpieczne zakupy

Gain a deep understanding of applied deep learning on graphs from data, algorithm, and engineering viewpoints to construct enterprise-ready solutions using deep learning on graph data for wide range of domains

Key Features:

- Explore graph data in real-world systems and leverage graph learning for impactful business results

- Dive into popular and specialized deep neural architectures like graph convolutional and attention networks

- Learn how to build scalable and productionizable graph learning solutions

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

With their combined expertise spanning cutting-edge AI product development at industry giants such as Walmart, Adobe, Samsung, and Arista Networks, Lakshya and Subhajoy provide real-world insights into the transformative world of graph neural networks (GNNs).

This book demystifies GNNs, guiding you from foundational concepts to advanced techniques and real-world applications. You'll see how graph data structures power today's interconnected world, why specialized deep learning approaches are essential, and how to address challenges with existing methods. You'll start by dissecting early graph representation techniques such as DeepWalk and node2vec. From there, the book takes you through popular GNN architectures, covering graph convolutional and attention networks, autoencoder models, LLMs, and technologies such as retrieval augmented generation on graph data. With a strong theoretical grounding, you'll seamlessly navigate practical implementations, mastering the critical topics of scalability, interpretability, and application domains such as NLP, recommendations, and computer vision.

By the end of this book, you'll have mastered the underlying ideas and practical coding skills needed to innovate beyond current methods and gained strategic insights into the future of GNN technologies.

What You Will Learn:

- Discover how to extract business value through a graph-centric approach

- Develop a basic understanding of learning graph attributes using machine learning

- Identify the limitations of traditional deep learning with graph data and explore specialized graph-based architectures

- Understand industry applications of graph deep learning, including recommender systems and NLP

- Identify and overcome challenges in production such as scalability and interpretability

- Perform node classification and link prediction using PyTorch Geometric

Who this book is for:

For data scientists, machine learning practitioners, researchers delving into graph-based data, and software engineers crafting graph-related applications, this book offers theoretical and practical guidance with real-world examples. A foundational grasp of ML concepts and Python is presumed.

Table of Contents

- Introduction to Graph Learning

- Graph Learning in the Real World

- Graph Representation Learning

- Deep Learning Models for Graphs

- Graph Deep Learning Challenges

- Harnessing Large Language Models for Graph Learning

- Graph Deep Learning in Practice

- Graph Deep Learning for Natural Language Processing

- Building Recommendation Systems Using Graph Deep Learning

- Graph Deep Learning for Computer Vision

- Emerging Applications

- The Future of Graph Learning



EAN: 9781835885963
Kod produktu
493HAD03527KS
Rok wydania
2024
Strony
250
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Autorzy
Khandelwal Lakshya
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 12087 opinii
pixel