DARMOWA WYSYŁKA od 149 zł do Żabki i wielu innych punktów DPD Pickup!
Darmowa dostawa od 149,00 zł
Modern Time Series Forecasting with Python - Second Edition - Joseph Manu
Super cena

Modern Time Series Forecasting with Python - Second Edition - Joseph Manu

  • Industry-ready machine learning and deep learning time series analysis with PyTorch and pandas
330,82 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: 345,96 zł / szt.-4%
Cena regularna: 333,29 zł / szt.-1%
z
Możesz kupić także poprzez:
Produkt dostępny
Produkt dostępny
14 dni na łatwy zwrot
Bezpieczne zakupy

Learn traditional and cutting-edge machine learning (ML) and deep learning techniques and best practices for time series forecasting, including global forecasting models, conformal prediction, and transformer architectures

Key Features:

- Apply ML and global models to improve forecasting accuracy through practical examples

- Enhance your time series toolkit by using deep learning models, including RNNs, transformers, and N-BEATS

- Learn probabilistic forecasting with conformal prediction, Monte Carlo dropout, and quantile regressions

- Purchase of the print or Kindle book includes a free eBook in PDF format

Book Description:

Predicting the future, whether it's market trends, energy demand, or website traffic, has never been more crucial. This practical, hands-on guide empowers you to build and deploy powerful time series forecasting models. Whether you're working with traditional statistical methods or cutting-edge deep learning architectures, this book provides structured learning and best practices for both.

Starting with the basics, this data science book introduces fundamental time series concepts, such as ARIMA and exponential smoothing, before gradually progressing to advanced topics, such as machine learning for time series, deep neural networks, and transformers. As part of your fundamentals training, you'll learn preprocessing, feature engineering, and model evaluation. As you progress, you'll also explore global forecasting models, ensemble methods, and probabilistic forecasting techniques.

This new edition goes deeper into transformer architectures and probabilistic forecasting, including new content on the latest time series models, conformal prediction, and hierarchical forecasting. Whether you seek advanced deep learning insights or specialized architecture implementations, this edition provides practical strategies and new content to elevate your forecasting skills.

What You Will Learn:

- Build machine learning models for regression-based time series forecasting

- Apply powerful feature engineering techniques to enhance prediction accuracy

- Tackle common challenges like non-stationarity and seasonality

- Combine multiple forecasts using ensembling and stacking for superior results

- Explore cutting-edge advancements in probabilistic forecasting and handle intermittent or sparse time series

- Evaluate and validate your forecasts using best practices and statistical metrics

Who this book is for:

This book is ideal for data scientists, financial analysts, quantitative analysts, machine learning engineers, and researchers who need to model time-dependent data across industries, such as finance, energy, meteorology, risk analysis, and retail. Whether you are a professional looking to apply cutting-edge models to real-world problems or a student aiming to build a strong foundation in time series analysis and forecasting, this book will provide the tools and techniques you need. Familiarity with Python and basic machine learning concepts is recommended.

Table of Contents

- Introducing Time Series

- Acquiring and Processing Time Series Data

- Analyzing and Visualizing Time Series Data

- Setting a Strong Baseline Forecast

- Time Series Forecasting as Regression

- Feature Engineering for Time Series Forecasting

- Target Transformations for Time Series Forecasting

- Forecasting Time Series with Machine Learning Models

- Ensembling and Stacking

- Global Forecasting Models

- Introduction to Deep Learning

- Building Blocks of Deep Learning for Time Series

- Common Modeling Patterns for Time Series

- Attention and Transformers for Time Series

(N.B. Please use the Read Sample option to see further chapters)



EAN: 9781835883181
Kod produktu
062GYK03527KS
Rok wydania
2024
Strony
658
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Autorzy
Joseph Manu
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 12087 opinii
pixel