📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Quantitative Structure-Pharmacokinetic Relationships - Artificial Neural Network Modeling - Joseph Turner

Quantitative Structure-Pharmacokinetic Relationships - Artificial Neural Network Modeling - Joseph Turner

Early pharmacokinetic optimisation is a key principle in drug discovery and development. Modeling absorption, distribution, metabolism and excretion (ADME) using experimentally-derived data is time-consuming and expensive. The use of computational in silico techniques to predict pharmacokinetic properties based on molecular structure is gaining wider validity and acceptance in the pharmaceutical industry. This book describes the use of artificial neural networks (ANN) as robust nonlinear modeling tools for developing quantitative structure-pharmacokinetic relationships (QSPkR). Different ANN paradigms are examined for predictive modeling of various pharmacokinetic parameters, both individually and simultaneously. Consideration is given to physiological processes, drug and molecular structural data, and model interpretation. As well as providing the theory behind ANN model construction, this book details their practical application in pharmaceutical research and gives meaning to many of the theoretically-derived molecular descriptors now available. A valuable resource for medicinal chemists and pharmaceutical scientists engaging in structure-property and structure-activity modeling.

EAN: 9783836480383
Symbol
119EZS03527KS
Rok wydania
2008
Elementy
160
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
365,31 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
119EZS03527KS
Kod producenta
9783836480383
Rok wydania
2008
Elementy
160
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski
Early pharmacokinetic optimisation is a key principle in drug discovery and development. Modeling absorption, distribution, metabolism and excretion (ADME) using experimentally-derived data is time-consuming and expensive. The use of computational in silico techniques to predict pharmacokinetic properties based on molecular structure is gaining wider validity and acceptance in the pharmaceutical industry. This book describes the use of artificial neural networks (ANN) as robust nonlinear modeling tools for developing quantitative structure-pharmacokinetic relationships (QSPkR). Different ANN paradigms are examined for predictive modeling of various pharmacokinetic parameters, both individually and simultaneously. Consideration is given to physiological processes, drug and molecular structural data, and model interpretation. As well as providing the theory behind ANN model construction, this book details their practical application in pharmaceutical research and gives meaning to many of the theoretically-derived molecular descriptors now available. A valuable resource for medicinal chemists and pharmaceutical scientists engaging in structure-property and structure-activity modeling.

EAN: 9783836480383
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13735 opinii
pixel