📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Python - Giuseppe Bonaccorso

Python - Giuseppe Bonaccorso

  • Expert machine learning systems and intelligent agents using Python

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems

Key Features:

- Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation

- Build deep learning models for object detection, image classification, similarity learning, and more

- Build, deploy, and scale end-to-end deep neural network models in a production environment

Book Description:

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries.

You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more.

By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems

This Learning Path includes content from the following Packt products:

- Mastering Machine Learning Algorithms by Giuseppe Bonaccorso

- Mastering TensorFlow 1.x by Armando Fandango

- Deep Learning for Computer Vision by Rajalingappaa Shanmugamani

What you will learn:

- Explore how an ML model can be trained, optimized, and evaluated

- Work with Autoencoders and Generative Adversarial Networks

- Explore the most important Reinforcement Learning techniques

- Build end-to-end deep learning (CNN, RNN, and Autoencoders) models

Who this book is for:

This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model.

You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.



EAN: 9781789957211
Symbol
274FKR03527KS
Rok wydania
2018
Elementy
764
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Strony
764
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
296,02 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
274FKR03527KS
Kod producenta
9781789957211
Rok wydania
2018
Elementy
764
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Strony
764
Autorzy
Giuseppe Bonaccorso

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems

Key Features:

- Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation

- Build deep learning models for object detection, image classification, similarity learning, and more

- Build, deploy, and scale end-to-end deep neural network models in a production environment

Book Description:

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries.

You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more.

By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems

This Learning Path includes content from the following Packt products:

- Mastering Machine Learning Algorithms by Giuseppe Bonaccorso

- Mastering TensorFlow 1.x by Armando Fandango

- Deep Learning for Computer Vision by Rajalingappaa Shanmugamani

What you will learn:

- Explore how an ML model can be trained, optimized, and evaluated

- Work with Autoencoders and Generative Adversarial Networks

- Explore the most important Reinforcement Learning techniques

- Build end-to-end deep learning (CNN, RNN, and Autoencoders) models

Who this book is for:

This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model.

You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.



EAN: 9781789957211
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13734 opinii
pixel