DIMENSIONALITY REDUCTION FOR CLASSIFICATION WITH HIGH-DIMENSIONAL DATA - Tian Siva
DIMENSIONALITY REDUCTION FOR CLASSIFICATION WITH HIGH-DIMENSIONAL DATA - Tian Siva
AutorzyTian Siva
EAN: 9783639288681
Symbol
542EYT03527KS
Rok wydania
2010
Elementy
124
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski

Bez ryzyka
14 dni na łatwy zwrot

Szeroki asortyment
ponad milion pozycji

Niskie ceny i rabaty
nawet do 50% każdego dnia
Niepotwierdzona zakupem
Ocena: /5
Symbol
542EYT03527KS
Kod producenta
9783639288681
Autorzy
Tian Siva
Rok wydania
2010
Elementy
124
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski

High-dimensional data refers to data with a large number of variables. Classifying these data is a difficult problem because the enormous number of variables poses challenges to conventional classification methods and renders many classical techniques impractical. A natural solution is to add a dimensionality reduction step before a classification technique is applied. We Propose three methods to deal with this problem: a simulated annealing (SA) based method, a multivariate adaptive stochastic search (MASS) method, and a functional adaptive classification (FAC) method. The third method considers functional predictors. They all utilize stochastic search algorithms to select a handful of optimal transformation directions from a large number of random directions in each iteration. These methods are designed to mimic variable selection type methods, such as the Lasso, or variable combination methods, such as PCA, or a method that combines the two approaches. We demonstrate the strengths of our methods on an extensive range of simulation and real-world studies.
EAN: 9783639288681
EAN: 9783639288681
Niepotwierdzona zakupem
Ocena: /5
Zapytaj o produkt
Niepotwierdzona zakupem
Ocena: /5
Napisz swoją opinię