📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów DPD! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
R Deep Learning Cookbook - Prakash Dr. PKS

R Deep Learning Cookbook - Prakash Dr. PKS

  • Solve complex neural net problems with TensorFlow, H2O and MXNet

Powerful, independent recipes to build deep learning models in different application areas using R libraries


Key Features:

  • Master intricacies of R deep learning packages such as mxnet ' tensorflow
  • Learn application on deep learning in different domains using practical examples from text, image and speech
  • Guide to set-up deep learning models using CPU and GPU


Book Description:

Deep Learning is the next big thing. It is a part of machine learning. It's favorable results in applications with huge and complex data is remarkable. Simultaneously, R programming language is very popular amongst the data miners and statisticians.


This book will help you to get through the problems that you face during the execution of different tasks and Understand hacks in deep learning, neural networks, and advanced machine learning techniques. It will also take you through complex deep learning algorithms and various deep learning packages and libraries in R. It will be starting with different packages in Deep Learning to neural networks and structures. You will also encounter the applications in text mining and processing along with a comparison between CPU and GPU performance.


By the end of the book, you will have a logical understanding of Deep learning and different deep learning packages to have the most appropriate solutions for your problems.


What You Will Learn:

  • Build deep learning models in different application areas using TensorFlow, H2O, and MXnet.
  • Analyzing a Deep boltzmann machine
  • Setting up and Analysing Deep belief networks
  • Building supervised model using various machine learning algorithms
  • Set up variants of basic convolution function
  • Represent data using Autoencoders.
  • Explore generative models available in Deep Learning.
  • Discover sequence modeling using Recurrent nets
  • Learn fundamentals of Reinforcement Leaning
  • Learn the steps involved in applying Deep Learning in text mining
  • Explore application of deep learning in signal processing
  • Utilize Transfer learning for utilizing pre-trained model
  • Train a deep learning model on a GPU


Who this book is for 

Data science professionals or analysts who have performed machine learning tasks and now want to explore deep learning and want a quick reference that could address the pain points while implementing deep learning. Those who wish to have an edge over other deep learning professionals will find this book quite useful.



EAN: 9781787121089
Symbol
310ERX03527KS
Rok wydania
2017
Format
19.1x23.5cm
Język
angielski
Strony
288
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
263,91 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
310ERX03527KS
Kod producenta
9781787121089
Rok wydania
2017
Format
19.1x23.5cm
Język
angielski
Strony
288
Autorzy
Prakash Dr. PKS

Powerful, independent recipes to build deep learning models in different application areas using R libraries


Key Features:

  • Master intricacies of R deep learning packages such as mxnet ' tensorflow
  • Learn application on deep learning in different domains using practical examples from text, image and speech
  • Guide to set-up deep learning models using CPU and GPU


Book Description:

Deep Learning is the next big thing. It is a part of machine learning. It's favorable results in applications with huge and complex data is remarkable. Simultaneously, R programming language is very popular amongst the data miners and statisticians.


This book will help you to get through the problems that you face during the execution of different tasks and Understand hacks in deep learning, neural networks, and advanced machine learning techniques. It will also take you through complex deep learning algorithms and various deep learning packages and libraries in R. It will be starting with different packages in Deep Learning to neural networks and structures. You will also encounter the applications in text mining and processing along with a comparison between CPU and GPU performance.


By the end of the book, you will have a logical understanding of Deep learning and different deep learning packages to have the most appropriate solutions for your problems.


What You Will Learn:

  • Build deep learning models in different application areas using TensorFlow, H2O, and MXnet.
  • Analyzing a Deep boltzmann machine
  • Setting up and Analysing Deep belief networks
  • Building supervised model using various machine learning algorithms
  • Set up variants of basic convolution function
  • Represent data using Autoencoders.
  • Explore generative models available in Deep Learning.
  • Discover sequence modeling using Recurrent nets
  • Learn fundamentals of Reinforcement Leaning
  • Learn the steps involved in applying Deep Learning in text mining
  • Explore application of deep learning in signal processing
  • Utilize Transfer learning for utilizing pre-trained model
  • Train a deep learning model on a GPU


Who this book is for 

Data science professionals or analysts who have performed machine learning tasks and now want to explore deep learning and want a quick reference that could address the pain points while implementing deep learning. Those who wish to have an edge over other deep learning professionals will find this book quite useful.



EAN: 9781787121089
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13791 opinii
pixel