Semisupervised Learning for Computational Linguistics - Steven Abney
Semisupervised Learning for Computational Linguistics - Steven Abney
AutorzySteven Abney
The book presents a brief history of semisupervised learning and its place in the spectrum of learning methods before moving on to discuss well-known natural language processing methods, such as self-training and co-training. It then centers on machine learning techniques, including the boundary-oriented methods of perceptrons, boosting, support vector machines (SVMs), and the null-category noise model. In addition, the book covers clustering, the expectation-maximization (EM) algorithm, related generative methods, and agreement methods. It concludes with the graph-based method of label propagation as well as a detailed discussion of spectral methods.
Taking an intuitive approach to the material, this lucid book facilitates the application of semisupervised learning methods to natural language processing and provides the framework and motivation for a more systematic study of machine learning.
EAN: 9780367388638
Marka
Symbol
161GWT03527KS
Rok wydania
2019
Strony
324
Oprawa
Miekka
Format
15.6x23.4cm
Język
angielski

Bez ryzyka
14 dni na łatwy zwrot

Szeroki asortyment
ponad milion pozycji

Niskie ceny i rabaty
nawet do 50% każdego dnia
Niepotwierdzona zakupem
Ocena: /5
Marka
Symbol
161GWT03527KS
Kod producenta
9780367388638
Rok wydania
2019
Strony
324
Oprawa
Miekka
Format
15.6x23.4cm
Język
angielski
Autorzy
Steven Abney

The rapid advancement in the theoretical understanding of statistical and machine learning methods for semisupervised learning has made it difficult for nonspecialists to keep up to date in the field. Providing a broad, accessible treatment of the theory as well as linguistic applications, Semisupervised Learning for Computational Linguistics offers self-contained coverage of semisupervised methods that includes background material on supervised and unsupervised learning.
The book presents a brief history of semisupervised learning and its place in the spectrum of learning methods before moving on to discuss well-known natural language processing methods, such as self-training and co-training. It then centers on machine learning techniques, including the boundary-oriented methods of perceptrons, boosting, support vector machines (SVMs), and the null-category noise model. In addition, the book covers clustering, the expectation-maximization (EM) algorithm, related generative methods, and agreement methods. It concludes with the graph-based method of label propagation as well as a detailed discussion of spectral methods.
Taking an intuitive approach to the material, this lucid book facilitates the application of semisupervised learning methods to natural language processing and provides the framework and motivation for a more systematic study of machine learning.
EAN: 9780367388638
The book presents a brief history of semisupervised learning and its place in the spectrum of learning methods before moving on to discuss well-known natural language processing methods, such as self-training and co-training. It then centers on machine learning techniques, including the boundary-oriented methods of perceptrons, boosting, support vector machines (SVMs), and the null-category noise model. In addition, the book covers clustering, the expectation-maximization (EM) algorithm, related generative methods, and agreement methods. It concludes with the graph-based method of label propagation as well as a detailed discussion of spectral methods.
Taking an intuitive approach to the material, this lucid book facilitates the application of semisupervised learning methods to natural language processing and provides the framework and motivation for a more systematic study of machine learning.
EAN: 9780367388638
Niepotwierdzona zakupem
Ocena: /5
Zapytaj o produkt
Niepotwierdzona zakupem
Ocena: /5
Napisz swoją opinię