📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów DPD! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
The Role of Chemical Markers and Chemometrics in the Identification of Grasses Used as Food in Pre-Agrarian South West Asia - Michelle Cave

The Role of Chemical Markers and Chemometrics in the Identification of Grasses Used as Food in Pre-Agrarian South West Asia - Michelle Cave

This work explores the way in which novel chemical criteria can be used to identify charred remains of grains of small-grained grasses used as food by pre-agrarian hunter-gatherers in south-western Asia but which have hitherto rarely been identified with any precision. The grass family Gramineae or Poaceae, is the most diverse, abundant and widespread family of higher plants on the planet. Grasses correspondingly have enormous ecological and economic importance worldwide. Their importance is reflected in the prominent role of grain from wild grasses in hunter-gatherer subsistence. In order to reconstruct past subsistence practices and diet, especially of arid-zone hunter-gatherers, it is important to identify the remains of grasses recovered from archaeological sites. However, the recovered grass remains are most often charred, therefore the interpretive potential can be realized only if these charred remains are accurately identified at the level of genus and, in some cases, species. There are enormous problems in identifying charred remains, particularly when relying totally on gross morphological criteria. There is therefore a need for alternative criteria, such as that utilized by chemical analytical techniques. The core rationale in applying the different chemical techniques is the same throughout: grains are taken from modern grasses of known identity and spanning a spectrum of taxa likely to include all the charred ancient specimens to be identified (the unknowns). These modern grains are then analysed to generate spectra. Equivalent spectra from unknowns are then compared with those from the modern grains to effect an identification. Standard practice has hitherto involved comparing the two sets of spectra (know and unknowns) by visual inspection; i.e. 'by eye'. However, identifications based on such comparisons are inevitably to some degree untestable and unrepeatable, and this represents a long-standing problem in chemistry generally. In the present project the author has therefore explored the use of chemometrics: i.e. the use of statistical systems to compare spectra in a manner that is rigorously testable and repeatable. This is an entirely new development, and has never previously been applied in the analysis of archaeological data.



EAN: 9781841716305
Symbol
167GIH03527KS
Rok wydania
2004
Elementy
220
Oprawa
Miekka
Format
21.0x29.7cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
417,78 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
167GIH03527KS
Kod producenta
9781841716305
Rok wydania
2004
Elementy
220
Oprawa
Miekka
Format
21.0x29.7cm
Język
angielski
Autorzy
Michelle Cave

This work explores the way in which novel chemical criteria can be used to identify charred remains of grains of small-grained grasses used as food by pre-agrarian hunter-gatherers in south-western Asia but which have hitherto rarely been identified with any precision. The grass family Gramineae or Poaceae, is the most diverse, abundant and widespread family of higher plants on the planet. Grasses correspondingly have enormous ecological and economic importance worldwide. Their importance is reflected in the prominent role of grain from wild grasses in hunter-gatherer subsistence. In order to reconstruct past subsistence practices and diet, especially of arid-zone hunter-gatherers, it is important to identify the remains of grasses recovered from archaeological sites. However, the recovered grass remains are most often charred, therefore the interpretive potential can be realized only if these charred remains are accurately identified at the level of genus and, in some cases, species. There are enormous problems in identifying charred remains, particularly when relying totally on gross morphological criteria. There is therefore a need for alternative criteria, such as that utilized by chemical analytical techniques. The core rationale in applying the different chemical techniques is the same throughout: grains are taken from modern grasses of known identity and spanning a spectrum of taxa likely to include all the charred ancient specimens to be identified (the unknowns). These modern grains are then analysed to generate spectra. Equivalent spectra from unknowns are then compared with those from the modern grains to effect an identification. Standard practice has hitherto involved comparing the two sets of spectra (know and unknowns) by visual inspection; i.e. 'by eye'. However, identifications based on such comparisons are inevitably to some degree untestable and unrepeatable, and this represents a long-standing problem in chemistry generally. In the present project the author has therefore explored the use of chemometrics: i.e. the use of statistical systems to compare spectra in a manner that is rigorously testable and repeatable. This is an entirely new development, and has never previously been applied in the analysis of archaeological data.



EAN: 9781841716305
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13736 opinii
pixel