📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Witness Theory - Adrian Rezuş

Witness Theory - Adrian Rezuş

  • Notes on λ-calculus and Logic

This book is concerned with the mathematical analysis of the concept of formal proof in classical logic, and records - in substance - a longer exercise in applied λ-calculus.
Following colloquialisms going back to L. E. J. Brouwer, the objects of study in this enterprise are called witnesses. A witness is meant to represent the logical proof of a classically valid formula, in a given proof-context. The formalisms used to express witnesses and their equational behaviour are extensions of the pure `typed' λ-calculus, considered as equational theories.
Formally, a witness is generated from decorated - or `typed' - witness variables, representing assumptions, and witness operators, representing logical rules of inference.
The equational specifications serve to define the witness operators.
In general, this can be done by ignoring the `typing', i.e., the logic formulas themselves.
Model-theoretically, the witnesses are objects of an extensional Scott λ-model.

The approach - called, generically, `witness theory' - is inspired from work of N. G. de Bruijn, on a mathematical theory of proving, done during the late 1960s and the early 1970s, at the University of Eindhoven (The Netherlands), and is similar to the approach behind the Curry-Howard Correspondence, familiar from intuitionistic logic.

For the classical case, the decorations - oft called `types' - are classical logic formulas.
At quantifier-free level, the equational theory of concern is the λ-calculus with `surjective pairing' and some subsystens thereof, appropriately decorated.
The extension to propositional, first- and second-order quantifiers is straightforward.


The book consists of a collection of notes and papers written and circulated during the last ten years, as a continuation of previous research done by the author during the nineteen eighties.
Among other things, it includes a survey of the origins of modern proof theory - Frege to Gentzen - from a witness-theoretical point of view, as well as a characteristic application of witness theory to a practical logic problem concerning axiomatisability.



EAN: 9781848903265
Symbol
733FTP03527KS
Rok wydania
2020
Elementy
390
Oprawa
Miekka
Format
15.6x23.4cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
108,18 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
733FTP03527KS
Kod producenta
9781848903265
Rok wydania
2020
Elementy
390
Oprawa
Miekka
Format
15.6x23.4cm
Język
angielski
Autorzy
Adrian Rezuş

This book is concerned with the mathematical analysis of the concept of formal proof in classical logic, and records - in substance - a longer exercise in applied λ-calculus.
Following colloquialisms going back to L. E. J. Brouwer, the objects of study in this enterprise are called witnesses. A witness is meant to represent the logical proof of a classically valid formula, in a given proof-context. The formalisms used to express witnesses and their equational behaviour are extensions of the pure `typed' λ-calculus, considered as equational theories.
Formally, a witness is generated from decorated - or `typed' - witness variables, representing assumptions, and witness operators, representing logical rules of inference.
The equational specifications serve to define the witness operators.
In general, this can be done by ignoring the `typing', i.e., the logic formulas themselves.
Model-theoretically, the witnesses are objects of an extensional Scott λ-model.

The approach - called, generically, `witness theory' - is inspired from work of N. G. de Bruijn, on a mathematical theory of proving, done during the late 1960s and the early 1970s, at the University of Eindhoven (The Netherlands), and is similar to the approach behind the Curry-Howard Correspondence, familiar from intuitionistic logic.

For the classical case, the decorations - oft called `types' - are classical logic formulas.
At quantifier-free level, the equational theory of concern is the λ-calculus with `surjective pairing' and some subsystens thereof, appropriately decorated.
The extension to propositional, first- and second-order quantifiers is straightforward.


The book consists of a collection of notes and papers written and circulated during the last ten years, as a continuation of previous research done by the author during the nineteen eighties.
Among other things, it includes a survey of the origins of modern proof theory - Frege to Gentzen - from a witness-theoretical point of view, as well as a characteristic application of witness theory to a practical logic problem concerning axiomatisability.



EAN: 9781848903265
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13729 opinii
pixel