Multi- Objective Evolutionary Algorithms of Spiking Neural Network - Saleh Abdulrazak Yahya
Multi- Objective Evolutionary Algorithms of Spiking Neural Network - Saleh Abdulrazak Yahya
AutorzySaleh Abdulrazak Yahya
EAN: 9783330332683
Symbol
800GBK03527KS
Rok wydania
2017
Elementy
64
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski

Bez ryzyka
14 dni na łatwy zwrot

Szeroki asortyment
ponad milion pozycji

Niskie ceny i rabaty
nawet do 50% każdego dnia
Niepotwierdzona zakupem
Ocena: /5
Symbol
800GBK03527KS
Kod producenta
9783330332683
Rok wydania
2017
Elementy
64
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski
Autorzy
Saleh Abdulrazak Yahya

Spiking neural network (SNN) plays an essential role in classification problems. Although there are many models of SNN, Evolving Spiking Neural Network (ESNN) is widely used in many recent research works. Evolutionary algorithms, mainly differential evolution (DE) have been used for enhancing ESNN algorithm. However, many real-world optimisation problems include several contradictory objectives. Rather than single optimisation, Multi-Objective Optimisation (MOO) can be utilised as a set of optimal solutions to solve these problems.In this book, Harmony Search (HS) and memetic approach were used to improve the performance of MOO with ESNN. Consequently, Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) was applied to improve ESNN structure and accuracy rates. Standard data sets from the UCI machine learning are used for evaluating the performance of this enhanced multi objective hybrid model. The experimental results have proved that the Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) gives better results in terms of accuracy and network structure.
EAN: 9783330332683
EAN: 9783330332683
Niepotwierdzona zakupem
Ocena: /5
Zapytaj o produkt
Niepotwierdzona zakupem
Ocena: /5
Napisz swoją opinię