📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów DPD! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Agrégation et méthodes à patch pour le débruitage d'image - SALMON-J

Agrégation et méthodes à patch pour le débruitage d'image - SALMON-J

AutorzySALMON-J
Le problème étudié dans cette thèse est celui du débruitage d'images numériques corrompues par un bruit blanc gaussien. Les méthodes utilisées pour récupérer une meilleure image reposent sur les patchs et sont des variantes des Non-Local Means. Les contributions de la thèse sont à la fois pratiques et théoriques. Tout d'abord, on étudie précisément l'influence des divers paramètres de la méthode. On met ensuite en lumière une limite observée sur le traitement des bords par les méthodes à patchs habituelles. On donne alors une meilleure façon de combiner l'information fournie à partir des patchs pour estimer pixel par pixel. D'un point de vue théorique, on présente un cadre non asymptotique pour contrôler notre estimateur. On donne alors des résultats de type inégalités oracles pour des estimateurs vérifiant des propriétés plus restrictives. Les techniques utilisées reposent sur l'agrégation d'estimateurs, et plus particulièrement sur l'agrégation à poids exponentiels. La méthode requiert typiquement une mesure du risque, obtenue à travers un estimateur sans biais de celui-ci, par exemple par la méthode

EAN: 9786131592751
Symbol
968FCT03527KS
Rok wydania
2018
Elementy
176
Oprawa
Miekka
Format
15.2x22.9cm
Język
francuski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
464,18 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
968FCT03527KS
Kod producenta
9786131592751
Rok wydania
2018
Elementy
176
Oprawa
Miekka
Format
15.2x22.9cm
Język
francuski
Autorzy
SALMON-J
Le problème étudié dans cette thèse est celui du débruitage d'images numériques corrompues par un bruit blanc gaussien. Les méthodes utilisées pour récupérer une meilleure image reposent sur les patchs et sont des variantes des Non-Local Means. Les contributions de la thèse sont à la fois pratiques et théoriques. Tout d'abord, on étudie précisément l'influence des divers paramètres de la méthode. On met ensuite en lumière une limite observée sur le traitement des bords par les méthodes à patchs habituelles. On donne alors une meilleure façon de combiner l'information fournie à partir des patchs pour estimer pixel par pixel. D'un point de vue théorique, on présente un cadre non asymptotique pour contrôler notre estimateur. On donne alors des résultats de type inégalités oracles pour des estimateurs vérifiant des propriétés plus restrictives. Les techniques utilisées reposent sur l'agrégation d'estimateurs, et plus particulièrement sur l'agrégation à poids exponentiels. La méthode requiert typiquement une mesure du risque, obtenue à travers un estimateur sans biais de celui-ci, par exemple par la méthode

EAN: 9786131592751
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13755 opinii
pixel