📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Human Face Recognition with Support Vector Machines - Parthiban Latha

Human Face Recognition with Support Vector Machines - Parthiban Latha

The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually.

EAN: 9783639366990
Symbol
605FBR03527KS
Rok wydania
2011
Elementy
64
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
296,83 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
605FBR03527KS
Kod producenta
9783639366990
Autorzy
Parthiban Latha
Rok wydania
2011
Elementy
64
Oprawa
Miekka
Format
15.2x22.9cm
Język
angielski
The computer vision problem of face recognition has over the years become a common high-requirement benchmark for machine learning methods. In the last decade, highly efficient face recognition systems have been developed that extensively use the nature of the image domain to achieve accurate real-time performance. The effectiveness of such systems are possible only with the progress of machine learning algorithms. Support vector machine learning is a relatively recent method that offers a good generalization performance in classification problems like face recognition. An algorithm based on Gabor texture information with SVM classifier is demonstrated in this book.The estimated model parameters serve as texture representation and experiments were performed on Yale,ORL and FERET databases to validate the feasibility of the method. The results showed that both Gabor magnitude and Gabor phase based texture representation technique with SVM classifier significantly outperformed the widely used Gabor energy based systems and other existing subspace methods. In addition, the feature level fusion of these two kinds of texture representations performs better than when used individually.

EAN: 9783639366990
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13728 opinii
pixel