📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Applying Perceptrons to Speculation in Computer Architecture- Neural Networks in Future Microprocessors - Michael Black

Applying Perceptrons to Speculation in Computer Architecture- Neural Networks in Future Microprocessors - Michael Black

Modern microprocessors make use of speculation, or predictions about future program behavior, to optimize the execution of programs. Perceptrons are simple neural networks that can be highly useful in speculation for their ability to examine larger quantities of available data than more commonly used approaches, and identify which data lead to accurate results. This work first studies how perceptrons can be made to predict accurately when they directly replace the traditional pattern table predictor. Different training methods, perceptron topologies, and interference reduction strategies are evaluated. Perceptrons are then applied to two speculative applications: data value prediction and dataflow critical path prediction. Several novel perceptron- based prediction strategies are proposed for each application that can take advantage of a wider scope of past data in making predictions than previous predictors could. These predictors are evaluated against local tablebased approaches on a custom cycle-accurate processor simulator, and are shown on average to have both superior accuracy and higher instruction-percycle performance. This work is addressed to computer architects and computer engineering researchers.

EAN: 9783836425964
Symbol
878EUM03527KS
Autorzy
Michael Black
Rok wydania
2007
Elementy
256
Oprawa
Miekka
Format
17.0x24.4cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
426,05 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
878EUM03527KS
Kod producenta
9783836425964
Autorzy
Michael Black
Rok wydania
2007
Elementy
256
Oprawa
Miekka
Format
17.0x24.4cm
Język
angielski
Modern microprocessors make use of speculation, or predictions about future program behavior, to optimize the execution of programs. Perceptrons are simple neural networks that can be highly useful in speculation for their ability to examine larger quantities of available data than more commonly used approaches, and identify which data lead to accurate results. This work first studies how perceptrons can be made to predict accurately when they directly replace the traditional pattern table predictor. Different training methods, perceptron topologies, and interference reduction strategies are evaluated. Perceptrons are then applied to two speculative applications: data value prediction and dataflow critical path prediction. Several novel perceptron- based prediction strategies are proposed for each application that can take advantage of a wider scope of past data in making predictions than previous predictors could. These predictors are evaluated against local tablebased approaches on a custom cycle-accurate processor simulator, and are shown on average to have both superior accuracy and higher instruction-percycle performance. This work is addressed to computer architects and computer engineering researchers.

EAN: 9783836425964
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13725 opinii
pixel