📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Deep Learning for Data Architects - Khandelwal Shekhar

Deep Learning for Data Architects - Khandelwal Shekhar

  • Unleash the power of Python's deep learning algorithms (English Edition)

A hands-on guide to building and deploying deep learning models with Python


DESCRIPTION 

"Deep Learning for Data Architects" is a comprehensive guide that bridges the gap between data architecture and deep learning. It provides a solid foundation in Python for data science and serves as a launchpad into the world of AI and deep learning.


The book begins by addressing the challenges of transforming raw data into actionable insights. It provides a practical understanding of data handling and covers the construction of neural network-based predictive models. The book then explores specialized networks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). The book delves into the theory and practical aspects of these networks and offers Python code implementations for each. The final chapter of the book introduces Transformers, a revolutionary model that has had a significant impact on natural language processing (NLP). This chapter provides you with a thorough understanding of how Transformers work and includes Python code implementations.


By the end of the book, you will be able to use deep learning to solve real-world problems.


WHAT YOU WILL LEARN

Develop a comprehensive understanding of neural networks' key concepts and principles.

Gain proficiency in Python as you code and implement major deep-learning algorithms from scratch.

Build and implement predictive models using various neural networks

Learn how to use Transformers for complex NLP tasks

Explore techniques to enhance the performance of your deep learning models.


WHO THIS BOOK IS FOR

This book is for anyone who is interested in a career in emerging technologies, such as artificial intelligence (AI), data analytics, machine learning, deep learning, and data science. It is a comprehensive guide that covers the fundamentals of these technologies, as well as the skills and knowledge that you need to succeed in this field.








EAN: 9789355515391
Symbol
698GLS03527KS
Rok wydania
2023
Elementy
262
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
198,31 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
698GLS03527KS
Kod producenta
9789355515391
Rok wydania
2023
Elementy
262
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Autorzy
Khandelwal Shekhar

A hands-on guide to building and deploying deep learning models with Python


DESCRIPTION 

"Deep Learning for Data Architects" is a comprehensive guide that bridges the gap between data architecture and deep learning. It provides a solid foundation in Python for data science and serves as a launchpad into the world of AI and deep learning.


The book begins by addressing the challenges of transforming raw data into actionable insights. It provides a practical understanding of data handling and covers the construction of neural network-based predictive models. The book then explores specialized networks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). The book delves into the theory and practical aspects of these networks and offers Python code implementations for each. The final chapter of the book introduces Transformers, a revolutionary model that has had a significant impact on natural language processing (NLP). This chapter provides you with a thorough understanding of how Transformers work and includes Python code implementations.


By the end of the book, you will be able to use deep learning to solve real-world problems.


WHAT YOU WILL LEARN

Develop a comprehensive understanding of neural networks' key concepts and principles.

Gain proficiency in Python as you code and implement major deep-learning algorithms from scratch.

Build and implement predictive models using various neural networks

Learn how to use Transformers for complex NLP tasks

Explore techniques to enhance the performance of your deep learning models.


WHO THIS BOOK IS FOR

This book is for anyone who is interested in a career in emerging technologies, such as artificial intelligence (AI), data analytics, machine learning, deep learning, and data science. It is a comprehensive guide that covers the fundamentals of these technologies, as well as the skills and knowledge that you need to succeed in this field.








EAN: 9789355515391
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13723 opinii
pixel