📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Recommender Systems Meet Large Language Model Agents - Zhu Xi

Recommender Systems Meet Large Language Model Agents - Zhu Xi

  • A Survey
AutorzyZhu Xi

The integration of Large Language Models (LLM) and Recommender Systems (RS) has marked a transformative shift in how personalized recommendations are generated and delivered. Recommender systems, designed to predict user preferences and suggest relevant items, are ubiquitous in applications ranging from e-commerce to entertainment and social media. Historically, these systems have relied on techniques such as collaborative filtering, content-based filtering, and hybrid approaches. However, the advent of LLMs and AI agents has introduced new paradigms, significantly enhancing the capabilities and performance of recommender systems.

This monograph provides an extensive review of critical challenges, the current landscape, and future directions in the collaboration between LLM-based AI agents (LLM Agent) and recommender systems. The monograph begins with an introduction to the foundational knowledge, exploring the components of LLM agents and the applications of LLMs in recommender systems. It then delves into the symbiotic relationship between LLM agents and recommender systems, illustrating how LLM agents enhance recommender systems and how recommender systems support better LLM agents. Specifically, the overall architectures for designing LLM agents for recommendation are discussed, encompassing profile, memory, planning, and action components, along with multi-agent collaboration. Conversely, it investigates how recommender systems contribute to LLM agents, focusing on areas such as memory recommendation, plan recommendation, tool recommendation, agent recommendation, and personalized LLMs and LLM agents.

Furthermore, a critical evaluation is made of trustworthy AI agents and recommender systems, addressing key issues of safety, explainability, fairness, and privacy. Finally, potential future research directions are proposed, highlighting emerging trends and opportunities in the intersection of AI agents and recommender systems. This monograph concludes by summarizing the key insights of current research and outlining promising avenues for future exploration in this rapidly evolving field.



EAN: 9781638285649
Symbol
148HKP03527KS
Rok wydania
2025
Strony
162
Oprawa
Miekka
Format
15.6x23.4cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
475,34 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
148HKP03527KS
Kod producenta
9781638285649
Rok wydania
2025
Strony
162
Oprawa
Miekka
Format
15.6x23.4cm
Język
angielski
Autorzy
Zhu Xi

The integration of Large Language Models (LLM) and Recommender Systems (RS) has marked a transformative shift in how personalized recommendations are generated and delivered. Recommender systems, designed to predict user preferences and suggest relevant items, are ubiquitous in applications ranging from e-commerce to entertainment and social media. Historically, these systems have relied on techniques such as collaborative filtering, content-based filtering, and hybrid approaches. However, the advent of LLMs and AI agents has introduced new paradigms, significantly enhancing the capabilities and performance of recommender systems.

This monograph provides an extensive review of critical challenges, the current landscape, and future directions in the collaboration between LLM-based AI agents (LLM Agent) and recommender systems. The monograph begins with an introduction to the foundational knowledge, exploring the components of LLM agents and the applications of LLMs in recommender systems. It then delves into the symbiotic relationship between LLM agents and recommender systems, illustrating how LLM agents enhance recommender systems and how recommender systems support better LLM agents. Specifically, the overall architectures for designing LLM agents for recommendation are discussed, encompassing profile, memory, planning, and action components, along with multi-agent collaboration. Conversely, it investigates how recommender systems contribute to LLM agents, focusing on areas such as memory recommendation, plan recommendation, tool recommendation, agent recommendation, and personalized LLMs and LLM agents.

Furthermore, a critical evaluation is made of trustworthy AI agents and recommender systems, addressing key issues of safety, explainability, fairness, and privacy. Finally, potential future research directions are proposed, highlighting emerging trends and opportunities in the intersection of AI agents and recommender systems. This monograph concludes by summarizing the key insights of current research and outlining promising avenues for future exploration in this rapidly evolving field.



EAN: 9781638285649
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13705 opinii
pixel