📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Graph Data Modeling for NoSQL and SQL - Thomas Frisendal

Graph Data Modeling for NoSQL and SQL - Thomas Frisendal

  • Visualize Structure and Meaning

Master a graph data modeling technique superior to traditional data modeling for both relational and NoSQL databases (graph, document, key-value, and column), leveraging cognitive psychology to improve big data designs.

 

From Karen Lopez’s Foreword:

In this book, Thomas Frisendal raises important questions about the continued usefulness of traditional data modeling notations and approaches:

  • Are Entity Relationship Diagrams (ERDs) relevant to analytical data requirements?
  • Are ERDs relevant in the new world of Big Data?
  • Are ERDs still the best way to work with business users to understand their needs?
  • Are Logical and Physical Data Models too closely coupled?
  • Are we correct in using the same notations for communicating with business users and developers?
  • Should we refine our existing notations and tools to meet these new needs, or should we start again from a blank page?
  • What new notations and approaches will we need?
  • How will we use those to build enterprise database systems?

Frisendal takes us through the history of data modeling, enterprise data models and traditional modeling methods. He points out, quite contentiously, where he feels we have gone wrong and in a few places where we got it right. He then maps out the psychology of meaning and context, while identifying important issues about where data modeling may or may not fit in business modeling. The main subject of this work is a proposal for a new exploration-driven modeling approach and new modeling notations for business concept models, business solutions models, and physical data models with examples on how to leverage those for implementing into any target database or datastore. These new notations are based on a property graph approach to modeling data.

 

From the author’s introduction:

This book proposes a new approach to data modeling—one that “turns the inside out”. For well over thirty years, relational modeling and normalization was the name of the game. One can ask that if normalization was the answer, what was the problem? There is something upside-down in that approach, as we will see in this book.

Data analysis (modeling) is much like exploration. Almost literally. The data modeler wanders around searching for structure and content. It requires perception and cognitive skills, supported by intuition (a psychological phenomenon), that together determine how well the landscape of business semantics is mapped.

Mapping is what we do; we explore the unknowns, draw the maps and post the “Here be Dragons” warnings. Of course there are technical skills involved, and surprisingly, the most important ones come from psychology and visualization (again perception and cognition) rather than pure mathematical ability.

Two compelling events make a paradigm shift in data modeling possible, and also necessary:

  1. The advances in applied cognitive psychology address the needs for proper contextual framework and for better communication, also in data modeling, and
  2. The rapid intake of non-relational technologies (Big Data and NoSQL).


EAN: 9781634621212
Symbol
407GIA03527KS
Rok wydania
2016
Elementy
216
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
244,22 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 0,00 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Symbol
407GIA03527KS
Kod producenta
9781634621212
Rok wydania
2016
Elementy
216
Oprawa
Miekka
Format
19.1x23.5cm
Język
angielski
Autorzy
Thomas Frisendal

Master a graph data modeling technique superior to traditional data modeling for both relational and NoSQL databases (graph, document, key-value, and column), leveraging cognitive psychology to improve big data designs.

 

From Karen Lopez’s Foreword:

In this book, Thomas Frisendal raises important questions about the continued usefulness of traditional data modeling notations and approaches:

  • Are Entity Relationship Diagrams (ERDs) relevant to analytical data requirements?
  • Are ERDs relevant in the new world of Big Data?
  • Are ERDs still the best way to work with business users to understand their needs?
  • Are Logical and Physical Data Models too closely coupled?
  • Are we correct in using the same notations for communicating with business users and developers?
  • Should we refine our existing notations and tools to meet these new needs, or should we start again from a blank page?
  • What new notations and approaches will we need?
  • How will we use those to build enterprise database systems?

Frisendal takes us through the history of data modeling, enterprise data models and traditional modeling methods. He points out, quite contentiously, where he feels we have gone wrong and in a few places where we got it right. He then maps out the psychology of meaning and context, while identifying important issues about where data modeling may or may not fit in business modeling. The main subject of this work is a proposal for a new exploration-driven modeling approach and new modeling notations for business concept models, business solutions models, and physical data models with examples on how to leverage those for implementing into any target database or datastore. These new notations are based on a property graph approach to modeling data.

 

From the author’s introduction:

This book proposes a new approach to data modeling—one that “turns the inside out”. For well over thirty years, relational modeling and normalization was the name of the game. One can ask that if normalization was the answer, what was the problem? There is something upside-down in that approach, as we will see in this book.

Data analysis (modeling) is much like exploration. Almost literally. The data modeler wanders around searching for structure and content. It requires perception and cognitive skills, supported by intuition (a psychological phenomenon), that together determine how well the landscape of business semantics is mapped.

Mapping is what we do; we explore the unknowns, draw the maps and post the “Here be Dragons” warnings. Of course there are technical skills involved, and surprisingly, the most important ones come from psychology and visualization (again perception and cognition) rather than pure mathematical ability.

Two compelling events make a paradigm shift in data modeling possible, and also necessary:

  1. The advances in applied cognitive psychology address the needs for proper contextual framework and for better communication, also in data modeling, and
  2. The rapid intake of non-relational technologies (Big Data and NoSQL).


EAN: 9781634621212
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13711 opinii
pixel