📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Spark. Rozproszone uczenie maszynowe na dużą skalę - Adi Polak
Promocja Okazja

Spark. Rozproszone uczenie maszynowe na dużą skalę - Adi Polak

  • Jak korzystać z MLlib, TensorFlow i PyTorch
AutorzyAdi Polak

Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu. Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym. Najciekawsze zagadnienia: cykl życia uczenia maszynowego i MLflow inżynieria cech i przetwarzanie wstępne za pomocą Sparka szkolenie modelu i budowa potoku budowa systemu danych z wykorzystaniem uczenia głębokiego praca TensorFlow w trybie rozproszonym skalowanie systemu i tworzenie jego wewnętrznej architektury Właśnie takiej książki społeczność Sparka wyczekuje od dekady! Andy Petrella, autor książki Fundamentals of Data Observability



EAN: 9788328912342
Marka
Symbol
30832735
Rok wydania
2024
Strony
264
Oprawa
broszurowa
Format
235x165 mm
Data premiery
2024-08-08
Waga
432 g
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
47,25 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: 49,12 zł / szt.-3%
Cena regularna: 74,90 zł / szt.-37%
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 4,99 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Marka
Podmiot odpowiedzialny za ten produkt na terenie UE
HELION S.A.Więcej
Adres: Kościuszk 1CKod pocztowy: 44-100 Miasto: GliwiceKraj: PolskaNumer telefonu: 322309863Adres email: gpsr@grupahelion.pl
Symbol
30832735
Kod producenta
9788328912342
Rok wydania
2024
Strony
264
Oprawa
broszurowa
Format
235x165 mm
Data premiery
2024-08-08
Autorzy
Adi Polak
Waga
432 g

Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu. Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym. Najciekawsze zagadnienia: cykl życia uczenia maszynowego i MLflow inżynieria cech i przetwarzanie wstępne za pomocą Sparka szkolenie modelu i budowa potoku budowa systemu danych z wykorzystaniem uczenia głębokiego praca TensorFlow w trybie rozproszonym skalowanie systemu i tworzenie jego wewnętrznej architektury Właśnie takiej książki społeczność Sparka wyczekuje od dekady! Andy Petrella, autor książki Fundamentals of Data Observability



EAN: 9788328912342
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13705 opinii
pixel