📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Matematyka w deep learningu. Co musisz wiedzieć... - Ronald T. Kneusel
Promocja Okazja

Matematyka w deep learningu. Co musisz wiedzieć... - Ronald T. Kneusel

  • Co musisz wiedzieć, aby zrozumieć sieci neuronowe

Uczenie maszynowe niesie ze sobą obietnicę niezwykłych wynalazków: od samochodów autonomicznych po systemy medyczne diagnozujące choroby lepiej niż doświadczeni lekarze, ale także daje pole do rozwijania dziesiątków innych mniej lub bardziej niepokojących innowacji. Dziś do budowania systemów uczenia maszynowego można posłużyć się wygodnymi frameworkami, jednak rzeczywiste zrozumienie uczenia głębokiego wymaga znajomości kilku koncepcji matematycznych.

Koncepcje te zostały przystępnie wyjaśnione właśnie w tej książce. W szczególności zapoznasz się z praktycznymi aspektami probabilistyki, statystyki, algebry liniowej i rachunku różniczkowego. Prezentacji tych zagadnień towarzyszą fragmenty kodu w Pythonie i praktyczne przykłady zastosowań w uczeniu głębokim. Rozpoczniesz od zapoznania się z podstawami, takimi jak twierdzenie Bayesa, a następnie przejdziesz do bardziej zaawansowanych zagadnień, w tym uczenia sieci neuronowych przy użyciu wektorów, macierzy i pochodnych. Dwa ostatnie rozdziały dadzą Ci szansę użycia nowej wiedzy do zaimplementowania propagacji wstecznej i metody gradientu prostego - dwóch podstawowych algorytmów napędzających rozwój sztucznej inteligencji.

W książce między innymi:

zastosowanie statystyki do zrozumienia danych i oceny modeli

prawidłowe korzystanie z reguł prawdopodobieństwa

użycie wektorów i macierzy do przesyłania danych w sieciach neuronowych

algebra liniowa w analizie głównych składowych i rozkładu według wartości osobliwych

gradientowe metody optymalizacji, takie jak RMSprop, Adagrad i Adadelta

Chcesz zrozumieć sieci neuronowe? Odpowiedzi szukaj w matematyce!



EAN: 9788328910164
Marka
Symbol
649513
Rok wydania
2024
Strony
344
Oprawa
broszurowa
Format
167x234 mm
Data premiery
2024-11-05
Waga
540 g
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
55,86 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: 57,60 zł / szt.-3%
Cena regularna: 89,00 zł / szt.-37%
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 4,99 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Marka
Podmiot odpowiedzialny za ten produkt na terenie UE
HELION S.A.Więcej
Adres: Kościuszk 1CKod pocztowy: 44-100 Miasto: GliwiceKraj: PolskaNumer telefonu: 322309863Adres email: gpsr@grupahelion.pl
Symbol
649513
Kod producenta
9788328910164
Rok wydania
2024
Strony
344
Oprawa
broszurowa
Format
167x234 mm
Data premiery
2024-11-05
Autorzy
Ronald T. Kneusel
Waga
540 g

Uczenie maszynowe niesie ze sobą obietnicę niezwykłych wynalazków: od samochodów autonomicznych po systemy medyczne diagnozujące choroby lepiej niż doświadczeni lekarze, ale także daje pole do rozwijania dziesiątków innych mniej lub bardziej niepokojących innowacji. Dziś do budowania systemów uczenia maszynowego można posłużyć się wygodnymi frameworkami, jednak rzeczywiste zrozumienie uczenia głębokiego wymaga znajomości kilku koncepcji matematycznych.

Koncepcje te zostały przystępnie wyjaśnione właśnie w tej książce. W szczególności zapoznasz się z praktycznymi aspektami probabilistyki, statystyki, algebry liniowej i rachunku różniczkowego. Prezentacji tych zagadnień towarzyszą fragmenty kodu w Pythonie i praktyczne przykłady zastosowań w uczeniu głębokim. Rozpoczniesz od zapoznania się z podstawami, takimi jak twierdzenie Bayesa, a następnie przejdziesz do bardziej zaawansowanych zagadnień, w tym uczenia sieci neuronowych przy użyciu wektorów, macierzy i pochodnych. Dwa ostatnie rozdziały dadzą Ci szansę użycia nowej wiedzy do zaimplementowania propagacji wstecznej i metody gradientu prostego - dwóch podstawowych algorytmów napędzających rozwój sztucznej inteligencji.

W książce między innymi:

zastosowanie statystyki do zrozumienia danych i oceny modeli

prawidłowe korzystanie z reguł prawdopodobieństwa

użycie wektorów i macierzy do przesyłania danych w sieciach neuronowych

algebra liniowa w analizie głównych składowych i rozkładu według wartości osobliwych

gradientowe metody optymalizacji, takie jak RMSprop, Adagrad i Adadelta

Chcesz zrozumieć sieci neuronowe? Odpowiedzi szukaj w matematyce!



EAN: 9788328910164
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13692 opinii
pixel