📦Darmowa dostawa od 69 zł - do Żabki oraz automatów i punktów GLS! Przy mniejszych zamówieniach zapłacisz jedynie 4,99 zł!🚚
Darmowa dostawa od 69,00 zł
Miniatury matematyczne 77 - Zbigniew Bobiński, Piotr Nodzyński, Mirosław Uscki
Promocja Okazja

Miniatury matematyczne 77 - Zbigniew Bobiński, Piotr Nodzyński, Mirosław Uscki

W kolejnej miniaturze powracamy do rozważań związanych z polem figury. Nie będziemy badali wzorów na pola poszczególnych wielokątów. Problem ten jest trudny, między innymi ze względu na wczesny etap matematycznej nauki. Z tego powodu zajmiemy się porównywaniem pól wielokątów. Oczywiście nie będziemy zajmować się pogłębioną analizą samego pojęcia pola. Potraktujemy je w naturalnym i nieco intuicyjnym rozumieniu, tak jak to czyni się w trakcie początkowej nauki szkolnej matematyki. Zajmiemy się szczególnie polem wielokąta, głównie problemami wynikającymi ze słynnego twierdzenia Farkasa Bolyaia i Paula Gerwiena, które odkryli niezależnie w roku 1833. Jeżeli dwa wielokąty mają równe pola, to zawsze można jeden w nich podzielić na skończoną liczbę takich wielokątów, aby z nich można było ułożyć drugi wielokąt. Twierdzenie to pozwala porównywać pola wielokątów bez obliczania tych pól. Warto zauważyć, że aby stwierdzić, że dwa wielokąty mają równe pola, wystarczy podzielić każdy z tych wielokątów na mniejsze wielokąty, tak by każdy z tych podziałów miał tyle samo elementów i by każdy wielokąt jednego podziału można nałożyć na pewien wielokąt drugiego podziału, tak by się pokrywały i by te wielokąty w parach wyczerpywały wszystkie wielokąty w obydwu podziałach. Oznacza to, iż wziąwszy na przykład kwadrat wraz z danym jego podziałem możemy opisywać wielokąty o tym samym polu, dla których istnieje podział złożony z takich samych wielokątów jak podział kwadratu. Czasami te problemy pojawiają się w zadaniach zabawowych, chociaż wcale technicznie niełatwych, przykładem takich problemów są tangramy Będziemy rozważać wielokąty, przeważnie w miarę proste, wraz z ich podziałem i starać się będziemy opisywać wielokąty mające taki sam podział. Zwracamy uwagę na fakt, iż w początkowym etapie nauki matematyki przy wyprowadzaniu wzorów na pola nieco bardziej złożonych wielokątów korzystaliśmy z metody podziału takich wielokątów na mniejsze wielokąty i składaliśmy z nich wcześniej poznane wielokąty. Warto więc przećwiczyć tę metodę na bardziej skomplikowanych przykładach, tym bardziej że z podobnymi problemami spotykamy się na wielu konkursach matematycznych. Często układane wielokąty z elementów danego podziału przypominają figury lub postacie spotykane w innych sytuacjach - postacie zwierząt, litery, figury szachowe itp - wówczas nie podkreślamy tego, że budujemy wielokąty. Podobnie w odpowiedziach i w rozwiązaniach zadań nie staramy się za każdym razem zachowywać wymiarów poszczególnych elementów podziału, głównie zwracamy uwagę na kształt otrzymywanych wielokątów, chociaż powinniśmy budować wielokąty o danym polu W odpowiedziach i rozwiązaniach, szczególnie w rozdziałach II oraz III, często nie uzasadniamy poprawności odpowiedzi tzn. czy posiadają one żądane własności. Ograniczamy się tylko do manualnego sprawdzenia spełnienia warunków rozwiązania. Na końcu miniatury dodajemy szereg kartek z umieszczonymi na nich wielokątami, które wcześniej spotkaliśmy w omawianych zadaniach Proponujemy Czytelnikowi sprawdzenie przy ich pomocy prawdziwości zamieszczonych odpowiedzi i być może poszukanie innych rozwiązań tych zadań.



EAN: 9788366838147
Symbol
479164
Rok wydania
2022
Strony
72
Oprawa
broszurowa
Format
161x242 mm
Klasa
10+
Data premiery
2022-04-25
Liczba tomów
1
Waga
160 g
Więcej szczegółów
Bez ryzyka
14 dni na łatwy zwrot
Szeroki asortyment
ponad milion pozycji
Niskie ceny i rabaty
nawet do 50% każdego dnia
15,34 zł
/ szt.
Najniższa cena z 30 dni przed obniżką: 14,43 zł / szt.+6%
Cena regularna: 23,33 zł / szt.-34%
Możesz kupić także poprzez:
Do darmowej dostawy brakuje69,00 zł
Najtańsza dostawa 4,99 złWięcej
14 dni na łatwy zwrot
Bezpieczne zakupy
Kup teraz i zapłać za 30 dni jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Ten produkt nie jest dostępny w sklepie stacjonarnym
Podmiot odpowiedzialny za ten produkt na terenie UE
Wydawnictwo Aksjomat Piotr NodzyńskiWięcej
Adres: ul. Wita Stwosza 1/7Kod pocztowy: 87-100Miasto: ToruńKraj: PolskaNumer telefonu: 48566226941Adres email: wydawnictwo@aksjomat.torun.pl
Symbol
479164
Kod producenta
9788366838147
Rok wydania
2022
Strony
72
Oprawa
broszurowa
Format
161x242 mm
Klasa
10+
Data premiery
2022-04-25
Liczba tomów
1
Autorzy
Zbigniew Bobiński, Piotr Nodzyński, Mirosław Uscki
Waga
160 g

W kolejnej miniaturze powracamy do rozważań związanych z polem figury. Nie będziemy badali wzorów na pola poszczególnych wielokątów. Problem ten jest trudny, między innymi ze względu na wczesny etap matematycznej nauki. Z tego powodu zajmiemy się porównywaniem pól wielokątów. Oczywiście nie będziemy zajmować się pogłębioną analizą samego pojęcia pola. Potraktujemy je w naturalnym i nieco intuicyjnym rozumieniu, tak jak to czyni się w trakcie początkowej nauki szkolnej matematyki. Zajmiemy się szczególnie polem wielokąta, głównie problemami wynikającymi ze słynnego twierdzenia Farkasa Bolyaia i Paula Gerwiena, które odkryli niezależnie w roku 1833. Jeżeli dwa wielokąty mają równe pola, to zawsze można jeden w nich podzielić na skończoną liczbę takich wielokątów, aby z nich można było ułożyć drugi wielokąt. Twierdzenie to pozwala porównywać pola wielokątów bez obliczania tych pól. Warto zauważyć, że aby stwierdzić, że dwa wielokąty mają równe pola, wystarczy podzielić każdy z tych wielokątów na mniejsze wielokąty, tak by każdy z tych podziałów miał tyle samo elementów i by każdy wielokąt jednego podziału można nałożyć na pewien wielokąt drugiego podziału, tak by się pokrywały i by te wielokąty w parach wyczerpywały wszystkie wielokąty w obydwu podziałach. Oznacza to, iż wziąwszy na przykład kwadrat wraz z danym jego podziałem możemy opisywać wielokąty o tym samym polu, dla których istnieje podział złożony z takich samych wielokątów jak podział kwadratu. Czasami te problemy pojawiają się w zadaniach zabawowych, chociaż wcale technicznie niełatwych, przykładem takich problemów są tangramy Będziemy rozważać wielokąty, przeważnie w miarę proste, wraz z ich podziałem i starać się będziemy opisywać wielokąty mające taki sam podział. Zwracamy uwagę na fakt, iż w początkowym etapie nauki matematyki przy wyprowadzaniu wzorów na pola nieco bardziej złożonych wielokątów korzystaliśmy z metody podziału takich wielokątów na mniejsze wielokąty i składaliśmy z nich wcześniej poznane wielokąty. Warto więc przećwiczyć tę metodę na bardziej skomplikowanych przykładach, tym bardziej że z podobnymi problemami spotykamy się na wielu konkursach matematycznych. Często układane wielokąty z elementów danego podziału przypominają figury lub postacie spotykane w innych sytuacjach - postacie zwierząt, litery, figury szachowe itp - wówczas nie podkreślamy tego, że budujemy wielokąty. Podobnie w odpowiedziach i w rozwiązaniach zadań nie staramy się za każdym razem zachowywać wymiarów poszczególnych elementów podziału, głównie zwracamy uwagę na kształt otrzymywanych wielokątów, chociaż powinniśmy budować wielokąty o danym polu W odpowiedziach i rozwiązaniach, szczególnie w rozdziałach II oraz III, często nie uzasadniamy poprawności odpowiedzi tzn. czy posiadają one żądane własności. Ograniczamy się tylko do manualnego sprawdzenia spełnienia warunków rozwiązania. Na końcu miniatury dodajemy szereg kartek z umieszczonymi na nich wielokątami, które wcześniej spotkaliśmy w omawianych zadaniach Proponujemy Czytelnikowi sprawdzenie przy ich pomocy prawdziwości zamieszczonych odpowiedzi i być może poszukanie innych rozwiązań tych zadań.



EAN: 9788366838147
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
Prawdziwe opinie klientów
4.8 / 5.0 13723 opinii
pixel